banner USF Home College of Arts & Sciences OASIS myUSF USF A-Z Index

USF Home > College of Arts and Sciences > Chemistry Department

Brian  Space

Brian Space

Brian Space
Professor

Contact

Office: IDRB 210
Phone: 813/765-4846
Lab: IDRB 210
Fax: 813/974-3203
Email:

Links

Education

B.S., Boston University, 1988
Ph.D., Boston University, 1992

Research

Our youngest chemist with a fondness for salt water, or as Quincy says "structural studies of nano-confined ionic hydration"!

Quincy Jack Space



Mission Statement:

The Space Group mission is: 1) to foster qualitative and quantitative reasoning skills individually and through our interactions with others; 2) to develop informed writing, speaking and presentation skills; 3) to perform and facilitate world class science with integrity, discipline and high ethical standards; and 4) to seek new knowledge, going boldly where no one has gone before. In pursuit of this mission we seek to serve our University, community, society, the World and Universe. Our goal is balanced, sustainable progress on the elements of our mission.


The Space Group is a theoretical chemistry group concerned primarily with computer simulation of condensed phase phenomena. Current focus is on the development of highly accurate potential energy functions for environmentally relevant gases, such as carbon dioxide, hydrogen, nitrogen, methane, oxygen and associated oxides. The potentials are used in molecular simulations of sorption of such gases within metal–organic materials, or MOMs. MOMs are solid, 3D crystalline materials that are constructed with organic ligands linked to metal-containing clusters. They offer great potential as H2 storage, CO2 capture and CO2/CH4/N2/O2 separation platforms. Additionally, they are lightweight, can be intelligently engineered to have large surface areas and can be assembled from molecular building blocks with desired chemical functionality. Computation is a highly effective tool for this, and could lead to the discovery of new, useful MOMs.

From left to right: Brant Tudor, Adam Hogan, Tony Pham, Christian R. Cioce, Brian Space, Sameh Elsaidi, Mona Mohamed, Douglas Franz, Taylor Harris and Katherine Forrest.


The Space Group is honored to maintain a close collaboration with Dr. Michael Zaworotko and his group of highly talented researchers. Dr. Zaworotko serves as Bernal Chair of Crystal Engineering & Science Foundation of Ireland Research Professor at the University of Limerick. He is a world leader in the fields of crystal engineering & MOMs, and the partnership has resulted in several notable works including a recent publication in Nature.


Featured Work in Nature

The following animation showcases the preferential sorption of CO2 over N2 for a SIFSIX MOM, work that was published in Nature (Nugent et. al., Nature. 2013, 495, 80-84):

The metal-organic material SIFSIX-3-Zn shows high selectivity of CO2 (red molecules) over N2 (blue molecules).
Animation credit: Christian R. Cioce

Featured Article in Advances in Engineering

Figure Legend: The a-axis view of the 2 × 2 × 2 system cell of the metal-organic material (MOM), dia-7i-1-Co, showing multiple representations of methane (CH4) sorbed in the small pores of the framework. The system is shown using licorice representation with the exception of the central region of the framework and all CH4 molecules are depicted using space filling van der Waals illustration. Atom coloring corresponds to: C = gray, H = silver, O = red, N = blue, Co = pink; with the exception of the CH4 molecules sorbed in the central region which are colored green for visual clarity.

Coding Projects

MPMC (Massively Parallel Monte Carlo) is an open-source production originally authored by Jonathan L. Belof and currently maintained by Keith McLaughlin, Brant Tudor, Christian R. Cioce, Adam Hogan and other members of the Space Research Group. Please see the Wikipedia page for more detailed information.

Current Funding

View our currently funded projects here.

Former Students

Heather Ahlborn Heather Ahlborn
Corporate Business Development
EMD Millipore
290 Concord Road
Billerica, MA 01821
heather.ahlborn@emdmillipore.com

Corporate Business Development
EMD Millipore
Anthony Green Anthony Green
Sr. Scientific Officer
Research Computing
University of South Florida
4202 E. Fowler Ave., SVC4010
Tampa, FL 33620
tgreen@usf.edu

Sr. Scientific Officer
Research Computing
University of South Florida
Christine Neipert Christine Neipert
Chief Operating Officer
Marquis Plastic Surgery
6705 Red Road Suite 516
Coral Gables, FL 33143
christine67a@gmail.com

Chief Operating Officer
Marquis Plastic Surgery
Jon Belof Jon Belof
Physicist and Non-Equilibrium System Program Leader
Lawrence Livermore National Laboratory
P.O. Box 808, Mailstop L-096
7000 East Ave.
Livermore, CA 94550
belof1@llnl.gov

Physicist and Non-Equilibrium System Program Leader
Lawrence Livermore National Laboratory
Xingdong Ji Xingdong Ji
IBM
2300 Dulles Station Blvd
Herndon, VA 20171
xingdongji@gmail.com

IBM
Angela Perry Angela Perry
Department of Chemistry, Biochemistry and Physics
University of Tampa
401 W. Kennedy Blvd
Tampa, FL 33606
aperry@ut.edu

Department of Chemistry, Biochemistry and Physics
University of Tampa
Chris Cioce Chris Cioce
Postdoctoral Appointee
Sandia National Laboratories
P.O. Box 5800, MS 0968
Albuquerque, NM 87185
crcioce@sandia.gov

Postdoctoral Appointee
Sandia National Laboratories
Keith Mclaughlin Keith Mclaughlin
Assistant Vice President Model/Scoring/Analysis Analyst 4
Citigroup
kmclau@gmail.com

Assistant Vice President Model/Scoring/Analysis Analyst 4
Citigroup
Ben Roney Ben Roney
Senior DSP Engineer
Listen
580 Harrison Ave, Suite 3W
Boston, MA 02118
broney@listeninc.com

Senior DSP Engineer
Listen
Russell DeVane Russell DeVane
Corporate Functions R&D
Procter & Gamble
8611 Beckett Road
West Chester, OH 45069
waxpistol@gmail.com

Corporate Functions R&D
Procter & Gamble
Ashley Mullen Ashley Mullen
Bausch & Lomb (now Valeant)
amullen@mail.usf.edu

Bausch & Lomb (now Valeant)
Abe Stern Abe Stern
Postdoc
Prof. Douglas J. Tobias Group
University of California, Irvine
3412 Natural Sciences I
Mailcode 2025
Irvine, Ca 92697
abestern@gmail.com

Postdoc
Prof. Douglas J. Tobias Group
University of California, Irvine

Graduate Students

Katherine Forrest, Douglas Franz, Adam Hogan, Brant Tudor

Recent Publications

  Download an EndNote x7 reference library of the Space Research Group papers

Work recently featured on the back cover of ChemPhysChem:
Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal–Organic Frameworks

Papers with Current Students

  1. Tuning Pore Size in Square-Lattice Networks for Size-Selective Sieving of CO2.  
    Chen, K.-J.; Madden, D. G.; Pham, T.; Forrest, K. A.; Kumar, A.; Yang, Q.-Y.; Xue, W.; Space, B.; Perry IV, J. J.; Zhang, J.-P.; Chen, X.-M.; Zaworotko, M. J.
    Angew. Chem. Int. Ed. 2016, DOI: 10.1002/anie.201603934.
  2. An unusual H2 sorption mechanism in PCN-14: insights from molecular simulation.  
    Pham, T.; Forrest, K. A.; Space, B.
    Phys. Chem. Chem. Phys. 2016, DOI: 10.1039/C6CP02650H.
  3. Dynamics of H2 adsorbed in porous materials as revealed by computational analysis of inelastic neutron scattering spectra.  
    Pham, T.; Forrest, K. A.; Space, B.; Eckert, J.
    Phys. Chem. Chem. Phys. 2016, 18, 17141–17158.
  4. Hybrid Ultra-Microporous Materials for Selective Xe Adsorption and Separation.  
    Mohamed, M. H.; Elsaidi, S. K.; Pham, T.; Forrest, K. A.; Schaef, H. T.; Hogan, A.; Wojtas, L.; Xu, W.; Space, B.; Zaworotko, M. J.; Thallapally, P. K.
    Angew. Chem. Int. Ed. 2016, 55 (29), 8285–8289. .
  5. Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers.  
    Scott, H. S.; Ogiwara, N.; Chen, K.-J.; Madden, D. G.; Pham, T.; Forrest, K.; Space, B.; Horike, S.; Perry IV, J. J.; Kitagawa, S.; Zaworotko, M. J.
    Chem. Sci. 2016, DOI: 10.1039/C6SC01385F.
  6. Exceptional H2 sorption characteristics in a Mg2+-based metal–organic framework with small pores: insights from experimental and theoretical studies.  
    Pham, T.; Forrest, K. A.; Falcão, E. H. L.; Eckert, J.; Space, B.
    Phys. Chem. Chem. Phys. 2016, 18(3), 1786–1796.
  7. Dramatic Effect of the Electrostatic Parameters on H2 Sorption in an M-MOF-74 Analogue.  
    Pham, T.; Forrest, K. A.; Eckert, J.; Space, B.
    Cryst. Growth Des. 2016, 16(2), 867–874.
  8. Crystal Engineering of a 4,6-c fsc Platform That Can Serve as a Carbon Dioxide Single-Molecule Trap.  
    Elsaidi, S. K.; Mohamed, M. H.; Pham, T.; Hussein, T.; Wojtas, L.; Zaworotko, M. J.; Space, B.
    Cryst. Growth Des. 2016, 16(2), 1071–1080.
  9. Inelastic Neutron Scattering and Theoretical Studies of H2 Sorption in a Dy(III)-Based Phosphine Coordination Material.  
    Forrest, K. A.; Pham, T.; Georgiev, P. A.; Embs, J. P.; Waggoner, N. W.; Hogan, A.; Humphrey, S. M.; Eckert, J.; Space, B.
    Chem. Mater. 2015, 27, 7619–7626.
  10. Correction: Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas.
    Elsaidi, S. K.; Mohamed, M. H.; Schaef, H. T.; Kumar, A.; Lusi, M.; Pham, T.; Forrest, K. A.; Space, B.; Xu, W.; Halder, G. J.; Liu, J.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Commun. 2015, 51 16872–16872.
  11. Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht-Metal–Organic Frameworks.  
    Pham, T.; Forrest, K. A.; Gao, W.-Y.; Ma, S.; Space, B.
    ChemPhysChem 2015, 16(15), 3170–3179.
  12. Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas.  
    Elsaidi, S. K.; Mohamed, M. H.; Schaef, H. T.; Kumar, A.; Lusi, M.; Pham, T.; Forrest, K. A.; Space, B.; Xu, W.; Halder, G. J.; Liu, J.; Zaworotko, M. J.; Thallapally, P. K.
    Chem. Commun. 2015, 51, 15530-15533.
  13. Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene)2(Cr2O7)]n.  
    Scott, H. S.; Bajpai, A.; Chen, K.-J.; Pham, T; Space, B; Perry, J. J.; Zaworotko, M. J.
    Chem. Commun. 2015, 51, 14832-14835.
  14. Investigating H2 Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering.  
    Forrest, K. A.; Pham, T.; Georgiev, P. A.; Pinzan, F.; Cioce, C. R.; Unruh, T.; Eckert, J.; Space, B.
    Langmuir 2015, 31, 7328-7336.
  15. The local electric field favours more than exposed nitrogen atoms on CO2 capture: a case study on the rht-type MOF platform  
    Gao, W.-Y.; Pham, T.; Forrest, K. A.; Space, B.; Wojtas, L.; Chen, Y.-S.; Ma, S.
    Chem. Commun. 2015, 51, 9636-9639.
  16. Understanding Hydrogen Sorption in In-soc-MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions  
    Pham, T.; Forrest, K. A.; Hogan, A.; Tudor, B.; McLaughlin, K.; Belof, J. L.; Eckert, J.; Space, B.
    Cryst. Growth Des. 2015, 15, 1460-1471.
  17. Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation  
    Zhang, Y.; Li, B.; Krishna, R.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Forrest, K.; Space, B.; Ma, S.
    Chem. Commun. 2015, 51, 2714–2717.
  18. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks  
    Gao, W.; Cai, R.; Pham, T.; Forrest, K.; Hogan, A.; Nugent, P.; Williams, K.; Wojtas, L.; Luebke, R.; Weselinski, L; Zaworotko, M.; Space, B.; Chen, Y; Eddaoudi, M; Shi, X.; Ma, S
    Chem. Mater. 2015, 27 (6), pp 2144–2151.
  19. Understanding the H2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn).  
    Pham, T.; Forrest, K.A.; Banerjee, R.; Orcajo, G.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2015, 119 (2), pp 1078–1090.
  20. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface.  
    Green, A.J.; Space, B.
    J. Phys. Chem. B. 2015, 119, 9219–9224.
  21. Modeling PCN-61 and PCN-66: Isostructural rht-Metal–Organic Frameworks with Distinct CO2 Sorption Mechanisms.  
    Pham, T.; Forrest, K. A.; McDonald, K.; Space, B.
    Cryst. Growth Des. 2014, 14, 5599–5607.
  22. Capturing the H2–Metal Interaction in Mg-MOF-74 Using Classical Polarization.  
    Pham, T.; Forrest, K. A.; McLaughlin, K.; Eckert, J.; Space, B.
    J. Phys. Chem. C 2014, 118, 22683–22690.
  23. A high rotational barrier for physisorbed hydrogen in an fcu-metal–organic framework.  
    Pham, T.; Forrest, K.A.; Georgiev, P.; Lohstroh, W.; Xue, D.-X.; Hogan, A.; Eddaoudi, M.; Space, B.; Eckert, J.
    Chem. Commun. 2014, 50, 14109-14112.
  24. Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials.  
    Nugent, P.; Pham, T.; McLaughlin, K.; Georgiev, P.; Lohstroh, W.; Embs, J. P.; Zaworotko, M. J.; Space, B.; Eckert, J.
    J. Mater. Chem. A 2014, 2, 13884-13891.
  25. Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane.  
    Li, B.; Zhang, Y.; Krishna, R.; Yao, K.; Han, Y.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S.
    J. Am. Chem. Soc. 2014, 136 (24), 8654-8660.
  26. Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels.  
    Forrest, K. A.; Pham, T.; McLaughlin, K.; Hogan, A.; Space, B.
    Chem. Commun. 2014, 50, 7283-7286.
  27. Theoretical Investigations of CO2 and CH4 Sorption in an Interpenetrated Diamondoid Metal–Organic Material  
    Pham, T.; Forrest, K. A.; Tudor, B.; Elsaidi, S. K.; Mohamed, M. H.; McLaughlin K.; Cioce, C. R.; Zaworotko, M. J.; Space, B.
    Langmuir 2014, 30(22), 6454–6462. [Featured Article]
  28. Putting the Squeeze on CH4 and CO2 through Control over Interpenetration in Diamondoid Nets.  
    Elsaidi, S. K.; Mohamed, M. H.; Wojtas, L.; Chanthapally, A.; Pham, T.; Space, B.; Vittal, J. J. Zaworotko, M. J.
    J. Am. Chem. Soc. 2014, 136, 5072–5077.
  29. Simulations of Hydrogen Sorption in rht-MOF-1: Identifying the Binding Sites Through Explicit Polarization and Quantum Rotation Calculations.  
    Pham, T.; Forrest, K. A.; Hogan, A.; McLaughlin, K.; Belof, J. L.; Eckert, J.; Space, B.
    J. Mater. Chem A 2014, 2, 2088–2100.
  30. Investigating the Gas Sorption Mechanism in an rht-Metal–Organic Framework Through Computational Studies.  
    Pham, T.; Forrest, K. A.; Eckert, J.; Georgiev, P. A.; Mullen, A.; Luebke, R.; Cairns, A. J.; Belmabkhout, Y.; Eubank, J. F.; McLaughlin, K.; Lohstroh, W.; Eddaoudi, M.; Space, B.
    J. Phys. Chem. C 2014, 118, 439–456.
  31. Efficient calculation of many-body induced electrostatics in molecular systems.  
    McLaughlin, K.; Cioce, C. R.; Pham, T.; Belof, J. L.; Space, B.
    J. Chem. Phys. 2013, 139, 184112.
  32. A Polarizable and Transferable PHAST N2 Potential For Use in Materials Simulation.  
    Cioce, C. R.; McLaughlin, K.; Belof, J. L.; Space B.
    J. Chem. Theory Comput. 2013, 9, 5550–5557.
  33. A Polarizable and Transferable PHAST CO2 Potential For Materials Simulation.  
    Mullen, A. L.; Pham, T.; Forrest, K. A.; Cioce, C. R.; McLaughlin, K.; Space, B.
    J. Chem. Theory Comput. 2013, 9, 5421–5429.
  34. Solving the Many-Body Polarization Problem on GPUs: Application to MOFs.  
    Tudor, B.; Space, B.
    J. Comput. Sci. Ed. 2013, 4, 30–34.
  35. Pillar substitution modulates CO2 affinity in “mmo” topology networks  
    Mohamed, M.H.; Elsaidi, S.K.; Pham, T.; Forrest, K.A.; Tudor, B.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    Chem. Commun., 2013, 49, 9809–9811.
  36. Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO2 Sorption in [Cu(bpy)2SiF6]  
    Forrest, K.A.; Pham, T.; Nugent, P.; Burd, S.D.; Mullen, A.; Wojtas, L.; Zaworotko, M.J.; Space, B.
    Cryst. Growth Des., 2013, 13 (10), 4542–4548.
  37. Computational Studies of CO2 Sorption and Separation in an Ultramicroporous Metal–Organic Material  
    Forrest, K.A.; Pham, T.; Hogan, A.; McLaughlin, K.; Tudor, B.; Nugent, P.; Burd, S.D.; Mullen, A.; Cioce, C.R.; Wojtas, L.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (34), 17687–17698.
  38. A Robust Molecular Porous Material with High CO2 Uptake and Selectivity  
    Nugent, P.S.; Rhodus, V.L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2013, 135 (30), 10950–10953.
  39. Understanding Hydrogen Sorption in a Metal–Organic Framework with Open Metal Sites and Amide Functional Groups  
    Pham, T.; Forrest, K. A.; Nugent, P.; Belmabkhout, Y.; Luebke, R.; Eddaoudi, M.; Zaworotko, M. J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (18), 9340–9354.
  40. Theoretical Investigations of CO2 and H2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material  
    Pham, T.; Forrest, K.; McLaughlin, K.; Tudor, B.; Nugent, P.; Hogan, A.; Mullen, A.; Cioce, C.R.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2013, 117 (19), 9970–9982.
  41. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separations  
    Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K. A.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J.
    Nature. 2013, 495, 80-84.
  42. Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution  
    Nugent, P.; Rhodus, V.; Pham, T.; Tudor, B.; Forrest, K.A.; Wojtas, L.; Space, B.; Zaworotko, M.J.
    Chem. Commun., 2013, 49, 1606-1608.
  43. Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61  
    Forrest, K.A.; Pham, T.; McLaughlin, K.; Belof, J.L.; Stern, A.C.; Zaworotko, M.J.; Space, B.
    J. Phys. Chem. C, 2012, 116 (29), 15538–15549.
  44. Highly Selective CO2 Uptake in Uninodal 6-Connected “mmo” Nets Based upon MO42– (M = Cr, Mo) Pillars  
    Mohamed, M.H.; Elsaidi, S.K.; Wojtas, L.; Pham, T.; Forrest, K.A.; Tudor, B.; Space, B.; Zaworotko, M.J.
    J. Am. Chem. Soc., 2012, 134 (48), 19556-19559.
  45. A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions  
    McLaughlin, K.; Cioce, C. R.; Belof, J. L.; Space, B.,
    J. Chem. Phys. 2012, 136 (19).
  46. Erratum: “A molecular H2 potential for heterogeneous simulations including polarization and many-body van der Waals interactions” [J. Chem. Phys.136, 194302 (2012)]  
    McLaughlin, K.; Cioce, C. R.; Belof, J. L.; Space, B.,
    J. Chem. Phys. 2012, 137 (12), 129901.
  47. Characterization of Tunable Radical Metal-Carbenes: Key Intermediates in Catalytic Cyclopropanation  
    Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang, X. P.; Space, B.; Woodcock, H. L.,
    Organometallics 2011, 30 (10), 2739-2746.

Past Work

  1. Understanding hydrogen sorption in a polar metal-organic framework with constricted channels  
    Stern, A. C.; Belof, J. L.; Eddaoudi, M.; Space, B.,
    J. Chem. Phys. 2012, 136, 034705.
  2. Hydrogen adsorbed in a metal organic framework-5: Coupled translation-rotation eigenstates from quantum five-dimensional calculations  
    Matanovic, I.; Belof, J. L.; Space, B.; Sillar, K.; Sauer, J.; Eckert, J.; Bacic, Z.,
    J. Chem. Phys. 2012, 137, 014701.
  3. A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface  
    Green, A. J.; Perry, A.; Moore, P. B.; Space, B.
    Journal of Physics: Condensed Matter 2012, 24 (12), 124108.
  4. Atomic Charges Derived from Electrostatic Potentials for Molecular and Periodic Systems  
    Chen, D.-L.; Stern, A. C.; Space, B.; Johnson, J. K.,
    J. Phys. Chem. A 2010, (114), 10225–10233.
  5. Evidence for Substrate Preorganization in the Peptidylglycine α-Amidating Monooxygenase Reaction Describing the Contribution of Ground State Structure to Hydrogen Tunneling  
    McIntyre, N. R.; Lowe, E. W.; Belof, J. L.; Ivkovic, M.; Shafer, J.; Space, B.; Merkler, D. J.,
    J. Am. Chem. Soc. 2010, 132 (46), 16393-16402.
  6. Dielectric analysis of poly(methyl methacrylate) zinc(II) mono-pinacolborane diphenylporphyrin composites  
    Hilker, B; Fields, K. B.; Stern, A.; Space, B.; Zhang, X. P.; Harmon, J. P.
    Polymer 2010, 51 (21), 4790-4805.
  7. A Predictive Model of Hydrogen Sorption for Metal-Organic Materials  
    Belof, J. L.; Stern, A. C.; Space, B.,
    J. Phys. Chem. C 2009, 113 (21), 9316-9320.
  8. Making a life in the physical sciences  
    Space, B.,
    Journal of Organizational Behavior 2008, 29 (6), 755-759.
  9. Photophysical Studies of the Trans to Cis Isomerization of the Push-Pull Molecule: 1-(Pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene (mepepy)  
    Mokdad, A.; Belof, J. L.; Yi, S. W.; Shuler, S. E.; McLaughlin, M. L.; Space, B.; Larsen, R. W.,
    J. Phys. Chem. A 2008, 112 (36), 8310-8315.
  10. An Accurate and Transferable Intermolecular Diatomic Hydrogen Potential for Condensed Phase Simulation  
    Belof, J. L.; Stern, A. C.; Space, B.,
    J. Chem. Theory Comput. 2008, 4 (8), 1332-1337.
  11. A Distributed Hyperpolarizability Model for Liquid Water  
    Neipert, C.; Space, B.,
    Comput. Lett., 2007, 3 (111), 431-440.
  12. Generalized Computational Time Correlation Function Approach: Quantifying Quadrupole Contributions to Vibrationally Resonant Second-Order Interface-Specific Optical Spectroscopies.  
    Neipert, C.; Space, B.; Roney, A. B.
    J. Phys. Chem. C, 2007, 117 (111), 8749–8756.
  13. On the Mechanism of Hydrogen Storage in a Metal-Organic Framework Material  
    Belof, J. L.; Stern, A. C.; Eddaoudi, M.; Space, B.,
    J. Am. Chem. Soc. 2007, 129 (49), 15202-15210.
  14. A combined photothermal and molecular dynamics method for determining molecular volume changes  
    Ridley, C.; Stern, A. C.; Green, T.; DeVane, R.; Space, B.; Miksosvska, J.; Larsen, R. W.,
    Chemical Physics Letters 2006, 418 (1-3), 137-141.
  15. Theoretical Investigation of the Temperature Dependence of the Fifth-Order Raman Response Function of Fluid and Liquid Xenon  
    DeVane, R.; Kasprzyk, C.; Space, B.; Keyes, T.,
    J. Phys. Chem. B, 2006, 110(8), 3773–3781.
  16. A time correlation function theory describing static field enhanced third order optical effects at interfaces  
    Neipert, C.; Space, B.,
    J. Chem. Phys. 2006, 125, 224706.
  17. Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces  
    Perry, A.; Neipert, C.; Space, B.; Moore, P. B.,
    Chem Rev 2006, 106 (4), 1234-58.
  18. Time correlation function and finite field approaches to the calculation of the fifth order Raman response in liquid xenon  
    DeVane, R.; Space, B.; Jansen, T. I. C.; Keyes, T.,
    J. Chem. Phys. 2006, 125, 234501.
  19. Identification of a wagging vibrational mode of water molecules at the water/vapor interface  
    Perry, A.; Neipert, C.; Ridley, C.; Space, B.; Moore, P. B.,
    Physical Review E 2005, 71 (5), 050601.
  20. A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface  
    Perry, A.; Neipert, C.; Kasprzyk, C. R.; Green, T.; Space, B.; Moore, P. B.,
    J. Chem. Phys. 2005, 123 (144705).
  21. Applications of a time correlation function theory for the fifth-order Raman response function I: Atomic liquids  
    DeVane, R.; Ridley, C.; Space, B.; Keyes, T.,
    J. Chem. Phys. 2005, 123 (194507).
  22. A Molecular Dynamics Study of Aggregation Phenomena in Aqueous n-Propanol  
    Roney, A. B.; Space, B.; Castner, E. W.; Napoleon, R. L.; Moore, P. B.,
    J. Phys. Chem. B 2004, 108 (22), 7389-7401.
  23. Tractable theory of nonlinear response and multidimensional nonlinear spectroscopy  
    DeVane, R.; Ridley, C.; Space, B.; Keyes, T.,
    Phys. Rev. E 2004, 70.
  24. A time correlation function theory of two-dimensional infrared spectroscopy with applications to liquid water  
    DeVane, R.; Space, B.; Perry, A.; Neipert, C.; Ridley, C.; Keyes, T.,
    J. Chem. Phys. 2004 121, 3688
  25. A combined time correlation function and instantaneous normal mode study of the sum frequency generation spectroscopy of the water/vapor interface  
    Perry, A.; Ahlborn, H.; Space, B.; Moore, P. B.,
    J. Chem. Phys. 2003, 118 (18), 8411-8419.
  26. A Molecular Dynamics Method for Calculating Molecular Volume Changes Appropriate for Biomolecular Simulation  
    DeVane, R.; Ridley. C.; Larsen, R.W.; Space, B; Moore, P.B.; Chan, S.I.
    Biophysical Journal 2003 85, 2801-2807
  27. A time correlation function theory for the fifth order Raman response function with applications to liquid CS2  
    DeVane, R.; Ridley. C.; Space, B; Keyes, T.
    J. Chem. Phys. 2003 119, 6073
  28. A Combined Time Correlation Function and Instantaneous Normal Mode Investigation of Liquid-State Vibrational Spectroscopy  
    Moore, P.B.; Ahlborn, H.; Space, B.
    Liquid Dynamics 2002 Chapter 3, 30-43
  29. A Novel Technique for the Measurement of Polarization-Specific Ultrafast Raman Responses  
    Constantine, S.; Gardecki, J.A.; Zhou, Y.; Ziegler, L.D.
    J. Phys. Chem. A, 2001, 105 (43), 9851–9898
  30. A theoretical investigation of the temperature dependence of the optical Kerr effect and Raman spectroscopy of liquid CS2  
    Ji, X.; Ahlborn, H.; Space, B.; Moore, P.B.
    J. Chem. Phys., 2000, 113, 8693
  31. A combined instantaneous normal mode and time correlation function description of the optical Kerr effect and Raman spectroscopy of liquid CS2  
    Ji, X. D.; Alhborn, H.; Space, B.; Moore, P. B.; Zhou, Y.; Constantine, S.; Ziegler, L. D.
    J. Chem. Phys. 2000, 112 (9), 4186-4192.
  32. An atomically detailed description of metal–dielectric interfaces: The crossover from surface to bulk conducting properties of Ag–Xe  
    Shah, V.; Bowen, H.F.; Space, B.
    J. Chem. Phys. 2000, 112, 10998
  33. The effect of isotopic substitution and detailed balance on the infrared spectroscopy of water: A combined time correlation function and instantaneous normal mode analysis  
    Alhborn, H.; Space, B.; Moore, P.B.
    J. Chem. Phys. 2000, 112, 8083
  34. A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water.  
    Alhborn, H.; Ji, X.; Space, B.; Moore, P.B.
    J. Chem. Phys. 1999, 111, 10622-10632